

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Review of MCP Testing at ANL

Characterization Program

Characterization Program

BASELINE MCP-PMT STACKUP

Gap Spacing and Voltages

Gap 2: Impacts on saturation of MCP pair, spatial spread of signal.

Gap 3: spatial and temporal spreading of the charge cloud, space charge effects, interface with the anode

Characterization Program

A Brief History of the Characterization Program

A quick first test setup. Look at some commercial MCPs. Perform preliminary timing measurements. Successful comparison of commercial MCPs, before & after ALD coating of SEE enhanced material.

A Brief History of the Characterization Program

- A transitional setup, built closely to our final specifications.
- Iron out the technical problems in setup/methodology.
- Workout throughput/pipeline issuse.
- Perform first measurements of ALD-functionalized MCPs.

A Brief History of the Characterization Program

- Systematic and efficient characterization of ALD-MCPs.
- Characterization of systems-integration issues:
 - anode structure
 - data reconstruction techniques
 - electronics
- Move on to 8"x8", "Oreo cookies"

LAPPD

Summarizing the B' Results

MCP 64/65: Splitting up the Scope Data

LAPPD

MCP 64/65

MCP 64/65

difficulties weaving together different data to form a cohesive pulse height distribution

MCP 72/78

MCP 72/78

Relative Shift in Mean Arrival Time of Signal Vs Voltge on Anode Gap

MCP 72/78

MCP 72/78 Vs MCP 72/88: 20 vs 40 micron pores

Where We're At With the B Setup

Clean(-er) Sample Preparation

MCP samples are now assembled in a flow bench with dry nitrogen spray gun...

Clean(-er) Sample Preparation

chrome photocathode on sapphire disk

Clean(-er) Sample Preparation

new sample holder with photocathode, inter-MCP spacing, and 5 HV connections

sample holder is covered with UHV-grade foil to protect from dust during transportation and mounting into the chamber

LAPPD

Putting it all together....

new signal board mounted on the B-flange

The fully assembled flange...

First Signal - New Lab/New Chamber

Noise from the laser (Polkel Cell Driver)!

Noise goes away with better cabling...

Status, in short...

- Already demonstrated 10⁶ gains (project milestone).
- New facilities, dedicated laser, now available
- Automation-ready
- Working on improving handling/cleanliness
- Integrating lessons learned from the B'
- Summarizing B' results
- Ready to start taking measurements

Testing Challenges

- limited channels up to 4, maybe 8 (with two scopes)
- limited dynamic range.
- inter-calibration of different scope settings
- electronics issues: DC offsets, pulse shaping
- noise!
- understanding anode effects lost charge, noise
- controlling photon statistics QE of photocathode
- precision measurement of optical/electronic delays

This requires a careful, systematic calibration program *in parallel* with testing program. Order maters....

Testing Challenges

- limited channels up to 4, maybe 8 (with two scopes)
 - should be enough for small spot-size
- limited dynamic range.
 - · measurements at multiple scope scales
- inter-calibration of different scope settings
 - RF grade splitter, identical signal at different scope scales
- electronics issues: DC offsets, pulse shaping
 - baseline measurements, propagating known pulses through the elctronics
- noise!
 - appropriate cabling and shielding, long optical delay
- understanding anode effects lost charge, noise
 - bare anode-cathode measurements for different structures
- controlling photon statistics QE of photocathode
 - current versus intensity measurements with high light (for "average mode")
 - photon counting with pair of known commercial plates (for "single PE mode")
- precision measurement of optical/electronic delays
 - developing a quick, regular procedure. 3/4's of the way there...

Testing Categories

- 1. anode testing
 - single plate, PC board, glass, inside-out
- 2. single-plate testing in "average" mode
 - pulsed, many PEs per pulse, known input charge
- 3. "oreo cookie" testing
- 4. testing in single PE mode
 - (a) single plate
 - gain and timing, pulse height distributions, different chemistries and voltages
 - (b) two-plate
 - operational voltages, gain, timing, saturation, different chemistries/ combinations
- 5. 8" testing
- 6. sample consistency/long-term stability

Coordination with ALD Group

Coordination with ALD Group

LAPPD

Coordination with Simulations

- Meeting/brainstorming session with Valentin in August
- Finishing up a note on the meeting
- Achievements
 - modularization of the code
 - now operational in a linux environment
 - goal to mass produce single-plate MC, using a simple batch system
- Conceptual questions
 - origin of statistical variability
 - back-scattering/elastic scattering
 - imperfect/varrying materials
 - operational parameters
- Benchmarks
 - single plate data-MC comparisons
 - MC-MC comparisons with Arradiance MC

Hit's angle, deg (from normal vector)

"Oreo" Testing

TO THE B-FLANGE

- mechanical assembly is being made now
- testable on B-flange
- should be ready, before the month's end

8" Testing

All the vacuum components of the 8" chamber are purchased and ready...

Working to design a simple, glass or alumina assembly to couple 8" plates to a stripline anode...Hope to be ready to test 8" plates by late November.

LAPPD

Putting it all together...

Making Plans

- Things are looking good
- Worried a bit about man-power
 - lots of measurements
 - acquisition and analysis are time consuming (shifts?)
- Also worried about swapping between chambers (8" testing), oreo cookies...
- Hoping to nail down a realistic schedule that balances all of our priorities (8"/oreo/single-plate/double plate/ chemistries/voltages)
- Hoping to start measuring single-plates in a week or so.

